Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure

نویسندگان

  • F.-X. Philippe
  • B. Nicks
چکیده

The environmental impacts of livestock production are attracting increasing attention, especially the emission of greenhouse gases (GHGs). Currently, pork is the most widely consumed meat product in the world, and its production is expected to grow in the next few decades. This paper deals with the production of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) by animals and by manure from pig buildings, with a focus on the influence of rearing techniques and nutrition. GHG emissions in piggeries originate from animals through CO2 exhalation and CH4 enteric fermentation, and from manure through the release of CO2, CH4 and N2O. The level of the CO2 exhalation (E-CO2, pig) depends on the physiological stage, the body weight (BW), the production level and the feed intake of the animals concerned. Enteric CH4 (E-CH4, pig) is principally related to dietary fibre intake and the fermentative capacity of the pig’s hindgut. Based on a review of the literature, the following equations are proposed in order to estimate E-CO2, pig (in kg day ) and E-CH4,pig (in g day ) for fattening pigs: E-CO2, pig = 0.136 BW; E-CH4,pig = 0.012 dRes; with BW (in kg) and dRes for digestible residues (in g day ). Numerous pathways are responsible for GHG production in manure. In addition, the microbial, physical and chemical properties of manure interact and modulate the level of emissions. Influencing factors for removal systems for both liquid and solid fractions of manure have been investigated. A large range of parameters showing an impact on the level of GHG production from pig houses has been reported. However, few of these can be considered unquestionably as GHG mitigation techniques because some strategies have shown contradictory effects depending on the gas, the circumstances and the study. Nevertheless, frequent manure removal seems to be an efficient means to reduce concurrently CO2-, CH4and N2O-emissions from pig buildings for both slatted and bedded floor systems. Manure removal operations may be associated with specific storage conditions and efficient treatment in order to further reduce emissions. Several feeding strategies have been tested to decrease GHG emissions but they seem to be ineffective in reducing emissions both significantly and durably. In general, good management practices that enhance zootechnical performance will have beneficial consequences on GHG emission intensity. Taking into account the results described in the literature regarding CO2-, CH4and N2Oproduction from animals and manure in pig houses, we estimate total GHG emissions to 448.3 kg CO2equiv. per slaughter pig produced or 4.87 kg CO2equiv. per kg carcass. The fattening period accounts for more than 70% of total emissions, while the gestation, lactation and weaning periods each contribute to about 10% of total emissions. Emissions of CO2, CH4 and N2O contribute to 81, 17 and 2% of total emissions from pig buildings, representing 3.87, 0.83 and 0.11 kg CO2equiv. per kg carcass, respectively. ã 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opportunities for reducing greenhouse gas emissions through livestock wastemanagement in Florida

M anagement of livestock wastes can affect greenhouse gas emissions through attenuating both methane and nitrous oxide emissions, as well as by displacing carbon dioxide emissions from fossil fuel use that can be avoided through biogas production and use. Methane is naturally produced from the anaerobic decomposition of livestock manure and is a potent greenhouse gas with 21 times the greenhous...

متن کامل

Manipulation of dietary protein and nonstarch polysaccharide to control swine manure emissions.

Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of ...

متن کامل

Greenhouse Gas Emissions from Three Cage Layer Housing Systems

Agriculture accounts for 10 to 12% of the World's total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec's egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO₂), methane...

متن کامل

State-of-the-Art Greenhouse Gas Emission Inventory Guidance and Tools

The U.S. EPA State and Local Climate Change Program is unveiling the Emission Inventory Improvement Program Volume VIII: Estimating Greenhouse Gas Emissions, a revised guide for states conducting greenhouse gas emission inventories. The revised guidance is accompanied, for the first time, by the State Tool for Greenhouse Gas Inventory Development, a user-friendly inventory spreadsheet tool inte...

متن کامل

Greenhouse Gas Emissions from Livestock and Poultry

In 2008 the Environmental Protection Agency (EPA) estimated that only 6.4% of U.S. greenhouse gas (GHG) emissions originated from agriculture. Of this amount, 53.5% comes from animal agriculture. Agricultural activities are the largest source of N2O emissions in the U.S. accounting for 69% of the total N2O emissions for 2009. In animal agriculture, the greatest contributor to methane emissions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014